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ABSTRACT

Objectives: This study evaluated and compared a variety of active learning strategies, including a novel strategy

we proposed, as applied to the task of filtering incorrect semantic predications in SemMedDB.

Materials and methods: We evaluated 8 active learning strategies covering 3 types—uncertainty, representa-

tive, and combined—on 2 datasets of 6,000 total semantic predications from SemMedDB covering the domains

of substance interactions and clinical medicine, respectively. We also designed a novel combined strategy

called dynamic b that does not use hand-tuned hyperparameters. Each strategy was assessed by the Area under

the Learning Curve (ALC) and the number of training examples required to achieve a target Area Under the

ROC curve. We also visualized and compared the query patterns of the query strategies.

Results: All types of active learning (AL) methods beat the baseline on both datasets. Combined strategies out-

performed all other methods in terms of ALC, outperforming the baseline by over 0.05 ALC for both datasets

and reducing 58% annotation efforts in the best case. While representative strategies performed well, their per-

formance was matched or outperformed by the combined methods. Our proposed AL method dynamic b shows

promising ability to achieve near-optimal performance across 2 datasets.

Discussion: Our visual analysis of query patterns indicates that strategies which efficiently obtain a representa-

tive subsample perform better on this task.

Conclusion: Active learning is shown to be effective at reducing annotation costs for filtering incorrect semantic

predications from SemMedDB. Our proposed AL method demonstrated promising performance.

Key words: active machine learning, supervised machine learning, natural language processing, medical informatics, drug

interactions, clinical medicine

BACKGROUND AND SIGNIFICANCE

As of February 2018, PubMed contains over 28 million citations.

While this comprises a vast amount of valuable information, its stor-

age as unstructured text makes it infeasible for researchers to utilize

it effectively without automated assistance. Literature-based discov-

ery (LBD) is an automatic method to discover hypotheses based on

findings in the literature, and it has led to finding new potential

treatments for diseases (1–3) and previously unknown drug–drug

interactions (4–6). Instead of depending on co-occurrence of words,

using semantic predications has demonstrated to improve LBD (7).

SemRep (8), developed by the National Library of Medicine’s Se-

mantic Knowledge Representation Project, is a natural language

processing (NLP) tool to extract semantic predications from MED-

LINE. These predications are triplets subject entity, predicate, object

entity where the subject and object entities are Unified Medical

Language System (UMLS) concepts and the predicate is one of the
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30 relationships defined in (9). For example, SemRep extracts the

predication TGF-beta (C0040690), STIMULATES, IL-1Ra

(C0245109) from the sentence “TGF-beta stimulates secretion of

the IL-1Ra.” The output of SemRep applied to the entirety of MED-

LINE citations comprises the Semantic MEDLINE Database (Sem-

MedDB) (10), which totals over 90 million semantic predications as

of December 31, 2017.

While semantic predications have been used in a variety of re-

search efforts (4,11–13), SemRep’s precision is relatively low,

reported in the range 0.42–0.58 (4). This limits the use of semantic

predications in biomedical NLP systems as they are often incorrect.

A previous study (5) showed that machine learning (ML) techniques

can be employed to filter incorrect semantic predications from Sem-

Rep’s output, improving precision. However, training an ML model

requires an expert-annotated dataset, which is costly to develop. Re-

ducing the annotation cost of building such a model is imperative

for using the output of SemRep in biomedical NLP tasks.

Active learning (AL) is a method for reducing the annotation

cost for training statistical models. In AL, the learning algorithm

chooses the order in which it sees the training data using an algo-

rithm called a query strategy. The goal of this process is to query

examples in an order such that the model achieves the best possible

performance given the least amount of labeled training data, thereby

reducing the total annotation cost.

AL has been well described in the general ML literature (14–18)

and has been applied to biomedical and clinical text (19–24). How-

ever, the effectiveness of different AL methods varies widely across

datasets and tasks (25,26). Previous studies investigate this variation

by analyzing how AL affects the hypothesis space (15,27) as well as

discussing how the nature of clinical text data affects the perfor-

mance of different AL methods (22). Still, without a formal evalua-

tion it is impossible to determine which AL methods perform well

on the task of filtering semantic predications. We, therefore, provide

here the first application and comparative evaluation of AL to

semantic relationships extracted from biomedical literature.

Moreover, we designed a novel AL method, dynamic b, without

hand-tuned hyperparameters that achieves near-optimal perfor-

mance on this task.

OBJECTIVES

Our preliminary work (28) showed the potential value of AL applied

to semantic predications in biomedical literature. Expanding on this,

the objectives of this study are 3-fold:

• To assess the effectiveness of AL for reducing annotation cost for

the task of filtering incorrect semantic predications.
• To evaluate and compare query strategies and design a novel AL

method that does not use hand-tuned parameters
• To provide a comparative analysis of AL methods through visu-

alization to better understand how different types of methods

perform on this task.

Towards these objectives, we conducted simulated AL experi-

ments on 2 datasets of semantic predications using 8 query strategies

covering 3 query strategy types: uncertainty, representative, and

combined; and evaluated each strategy against a baseline, passive

learning. For the combined type, we developed an innovative query

strategy, dynamic b, for dynamically computing the weight hyper-

parameter in an effort to obtain a more generalizable AL model.

We also performed an error analysis of low middle, and high

performing query strategies using a novel method for visualizing

their query patterns and comparing them to their learning curves.

MATERIALS AND METHODS

Figure 1 illustrates the development process of the AL system. We

first retrieved a random subset of semantic predications from Sem-

MedDB within the substance interactions (SI) and clinical medicine

(CM) domains. These predications were annotated as either

“correct” or “incorrect” by 2 health informatics experts. Features

were then extracted from these examples as input to the ML algo-

rithm. The ML task was a binary classification problem in which

correct predications receive a positive label and incorrect predica-

tions receive a negative label. We used a linear support vector ma-

chine (SVM) with L2 regularization (29) as the classification

algorithm, implemented using the SGDClassifier in the scikit-learn

Python package (30). We then developed an AL system to simulate

experiments for each query strategy. We evaluated the annotation

cost of each strategy using the Area Under the Learning Curve

(ALC) and the number of iterations required to reach a target Area

Under the ROC Curve (AUC).

Datasets
We created 2 datasets for this study: an SI dataset and a CM dataset,

each containing 3000 semantic predications. These were chosen be-

cause SI predicates describe low-level molecular phenomena,

whereas CM predicates cover macro-level observable phenomena.

We included the following predicates from the SemMedDB Decem-

ber 2016 release:

• SI dataset: INTERACTS_WITH, STIMULATES, or INHIBITS.

These predicates specifically describe SI according to (9). Addi-

tionally, for this group the semantic types of the subject and ob-

ject entities were constrained to belong to the “Chemicals and

Drugs” UMLS semantic group.
• CM dataset: ADMINISTERED_TO, COEXISTS_WITH, COM-

PLICATES, DIAGNOSES, MANIFESTATION_OF, PRE-

CEDES, PREVENTS, PROCESS_OF, PRODUCES, TREATS, or

USES. This subset was determined to denote CM relationships

by a health informatician and physician (R.R.).

For each dataset an annotation guideline was generated by the

consensus of 2 annotators: a health informatician (J.V.) and a health

informatician and physician (R.R.). According to this guideline, the

annotators annotated a subset of 200 predications from each dataset

and inter-annotator agreement was established by computing

Cohen’s kappa and percentage agreement. The remaining semantic

predications were then split and independently annotated to obtain

the gold-standard labels for evaluation. Each semantic predication

was labeled as either “correct” or “incorrect” by comparing the re-

lation stated in the source sentence to the predication triplet and the

definition of the predicate as given in the appendix of (9).

Pre-processing and feature extraction
The sentences were converted to lower case, tokenized on white-

space, and English stop words were removed. Punctuation was also

removed, with the exception of hyphens in order to not split hyphen-

ated entity names such as CCK-PZ. The features extracted consisted

of tf-idf computed over the source sentences as well as the UMLS

CUIs of the entities in the predication. We did not find any

performance improvement using additional features such as
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predicate part-of-speech and argument distance. Using the ANOVA

F-test, we retained the top 10% of features that explain the greatest

amount of variance in the data. This resulted in 517 features for the

SI dataset and 614 features for the CM dataset. This number of fea-

tures was tuned to both obtain acceptable performance of the classi-

fier and allow training and prediction to run quickly.

Active learning
The AL system has 5 main components: a query strategy QS, an

ML model h, a pool of unlabeled data U, a pool of labeled data L,

and the gold-standard or “oracle” which provides the labels for the

data in U. There is also the held-out test data T upon which h is

evaluated. Training and annotation run in tandem in an iterative

process in which (i) the query strategy QS chooses an example from

U, (ii) the oracle is queried for the example’s label, (iii) the example

is added to L, and (iv) h is retrained on the new L. This process is

illustrated in Figure 2. Additionally, h is evaluated on T at every

iteration.

We evaluated 8 query strategies covering 3 types: uncertainty,

representative, and combined. These strategies are detailed below.

The baseline query strategy against which each was evaluated is

passive learning which, rather than making a series of informed

choices as to which examples to pick from U, picks each example at

random.

Uncertainty sampling

Uncertainty based query strategies operate under the assumption

that the most informative examples are those closest to the decision

boundary of the model h. The uncertainty sampling methods used

here are simple margin, least confidence, and least confidence with

dynamic bias.

Simple margin (SM): SM sampling (15) queries the least cer-

tain example from U by measuring each example’s distance to

the separating hyperplane. For this reason, simple margin is re-

stricted to SVM models. The chosen example x� from U is com-

puted by (1).

x� ¼ argminx2U f xð Þj j (1)

Where f xð Þ is the decision function of the SVM.

Least confidence (LC): The LC strategy (20) chooses the example

from U whose posterior probability given the ML model Ph is clos-

est to 0.5. This is computed by (2).

x� ¼ argmaxx2U 1� Ph ŷjxð Þ (2)

Where ŷ is the most probable class for example x under the

model. As shown in (18), in the case of binary classification LC is

equivalent to the other uncertainty sampling methods margin sam-

pling and entropy sampling. For this reason, these methods are not

included in this study.

Least Confidence with Dynamic Bias (LCB2): In LC the class dis-

tribution of L can become imbalanced resulting in a poor prediction

model. LCB2 (19) corrects for this by introducing the term Pmax

which compensates for class imbalance. Equation 2 is updated as

shown in (3).

x� ¼ argmaxx2U

Ph ŷ ¼ 1jxð Þ
Pmax

; if Ph ŷ ¼ 1jxð Þ < Pmax

1� Ph ŷ ¼ 1jxð Þ
Pmax

; otherwise

8>>><
>>>:

(3)

Where

• Pmax ¼ wu0:5þwb 1� ppð Þ, the linear combination of the un-

certainty term wu0:5 and the bias term wb 1� ppð Þ.

Figure 1. An overview of the active learning system development process.

Figure 2. The active learning process. From an initial labeled set L, train the

ML model h, choose the most informative example from the unlabeled set U

using the query strategy QS and the updated h, query the oracle for its label,

and update L.
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• wu ¼ Lj j=jU0j, the weight of uncertainty: the ratio of the size of

the current labeled set L to the size of the initial unlabeled set

U0.
• wb ¼ 1� wu, the weight of the bias.
• pp is the proportion of positive to negative labels in L.

The uncertainty term wu represents how certain the system is

that the current class distribution (represented by pp) is representa-

tive of the true class distribution. When L is large relative to U0, this

certainty is high. In this case the query strategy should compensate

less for any class imbalance. Thus, the influence of the bias term wb

1� ppð Þ is inversely proportional to the progress of the AL system

and diminishes as L increases.

LC and LCB2 both require posterior probabilities from the clas-

sifier. Platt scaling (31) was used to obtain posterior probabilities

from the SVM for these 2 strategies.

Representative sampling

Uncertainty sampling strategies may result in a labeled set distribu-

tion that is very different from the true distribution. In other words,

the system may get “stuck” modeling one area of the data. Repre-

sentative strategies, on the other hand, aim to keep the distributions

of the labeled and unlabeled sets similar to ensure the ML model

generalizes well to the test data. They do this by using distance and

similarity metrics to choose examples that are spread across the data

distribution. We used Euclidean distance in all of our representative

sampling experiments.

Distance to Center (D2C): The distance to center strategy (19)

aims to choose from U the examples most dissimilar from those in

L. It is given by (4).

x� ¼ argminx2U
1

1þ distðx; xL Þ
(4)

Where distð�) is a vector distance measure and xL is the mean

vector across samples in L.

Density: Rather than choosing the example with the greatest dis-

tance from the average x in L, as D2C does, density sampling,

adapted from (17), chooses the example with the greatest average

distance from every other x in U. It is given by (5).

x� ¼ argminx2U
1

jUj
XjUj

i¼1

1

1þ distðx; xiÞ
(5)

Density sampling thus focuses on querying examples that are

representative of U, rather than examples that are not representative

of L.

Min-Max: Min-Max sampling was originally developed for AL

applied to semi-supervised clustering tasks (16,32). Like D2C, this

method obtains a representative sample from U by choosing points

that are dissimilar from those in L. The difference lies in how the

dissimilarity is computed. Whereas D2C measures the distance of an

example to the mean L, Min-Max sampling computes the distance

between each pair of points and chooses the example from U that

has the greatest minimum distance to any other point in L. This ap-

proach is given by (6).

x� ¼ argmaxxi2U ðminxj2L
distðxi; xjÞ (6)

Min-Max aims to obtain a representative sample quickly by en-

suring that very similar points are not queried in succession. At the

time of writing, this study is the first to use Min-Max sampling for

fully supervised classification.

Combined sampling

Combined strategies leverage the benefits of uncertainty and repre-

sentative query strategies to outweigh the pitfalls of both. A com-

bined strategy thus aims to choose the example that is relatively

uncertain while still being representative of the unlabeled set.

Information density (ID): ID sampling (17) balances informative-

ness and representativeness by combining the scores output by query

strategies of both types into a single score. This is shown in (7).

x� ¼ argmaxx2U US xð Þ � RSðxÞ b (7)

Where US xð Þ is the uncertainty sampling score for x and

RSðxÞ is the representative sampling score for x. b is a hyperpara-

meter that weights the representative sampling score. In our imple-

mentation, US xð Þ and RSðxÞ are scaled to the interval [0, 1] to

ensure consistent behavior of b. In this study, we used LCB2 as the

uncertainty sampling strategy and Min-Max as the representative

sampling strategy for the ID sampling experiments, these being the

best performing strategies from each type.

Dynamic b: There are two things to note about the early stages

of the AL process, when L is small and U is large: (i) it is unlikely

that L is representative of U; (ii) given that L is small and unrepre-

sentative, the prediction model trained on L is likely to be poor.

Therefore, it is crucial to make L more representative early in the

AL process, while later it is more important to fine-tune the decision

boundary. These points motivated the development of dynamic b,

which adjusts the weight of the representative sampling score in (7)

according to the progress of the AL system. The definition of b in

equation 7 is updated to (8).

b ¼ 2 Uj j
Lj j (8)

Where jUj is the size of the current unlabeled set and jLj is the

size of the current labeled set.

Experiments and evaluation
We used 10-fold cross validation to evaluate each query strategy.

Ten percent (300) of the examples comprised the test fold and the

remaining 2700 examples comprised the training fold. Ten percent

(270) of the training examples were randomly selected for the initial

labeled set L0 while the remaining 2430 comprised the initial unla-

beled set U0. Each time L was updated and the ML model was

retrained, the model was evaluated on the test data T using AUC as

the performance metric. As the performance of the classifier is de-

pendent upon how the data is initially split into L0 and U0, we ran

each experiment ten times with different initializations of L0 and U0

and averaged the AUC scores at each update of L.

The AL system was evaluated using 2 metrics: the normalized

ALC as used in the active learning challenge (14) and the number of

training examples required to achieve 0.80 AUC. This AUC thresh-

old was chosen as the target because preliminary experiments found

that the best performing ML classifier achieved an AUC in the 0.80–

0.84 range on both datasets. Plotting the AUC as a function of the

size of the labeled set produces a learning curve. The ALC is the area

under this curve. The ALC is normalized using equation (9).

ALCnorm ¼
ALC� Arand

Amax�Arand
(9)

Where Arand is the area under the learning curve given random

predictions (0.5 AUC at every point on the learning curve) and Ama

x is the area under the best possible learning curve (1.0 AUC at every
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point on the learning curve). In our experiments, ALC is computed

using the full set of 2700 examples. Hereafter, ALC is taken to mean

the normalized ALC in (9).

RESULTS

Inter-annotator agreement computed over 200 semantic predica-

tions for both datasets was in the “substantial agreement” range

(33). Cohen’s kappa and percentage agreement on the SI and CM

datasets were 0.74 and 87%, 0.72 and 91%, respectively.

Table 1 shows the results of the simulated AL experiments on

the SI and CM datasets. The learning curves for each query strategy

on each dataset are given in Figure 3. All query strategies outper-

formed the passive learning baseline on both datasets. The represen-

tative sampling methods generally outperformed the uncertainty

sampling methods in terms of ALC. However, on the CM dataset

the representative-based methods required more training examples

to reach 0.80 AUC than the uncertainty-based methods, largely due

to a relative plateau in AUC from 500 to around 1700 training

examples. The best performing query strategy on the SI dataset was

ID sampling with b ¼ 1, which outperformed the baseline by 0.052

ALC (ALC ¼ 0.642). Additionally, the number of annotations re-

quired to reach 0.80 AUC on the SI dataset was reduced by 58%

compared with the baseline. The best performing strategy on the

CM datasets was tied in terms of ALC between ID sampling with b
¼100 and Min-Max, both of which achieved an ALC of 0.550,

0.059 greater than the baseline. Min-Max did, however, require 19

fewer annotations to reach 0.80 AUC, a reduction of 13%. Our pro-

posed dynamic b method closely approximated (by 0.001 ALC) the

learning curve of the best performing b value for both datasets,

achieving comparable ALCs of 0.641 and 0.549, respectively.

DISCUSSION

We have shown that AL is able to reduce the number of annotations

required for this task by 749 (58%) in the best case. As the annota-

tors for this task averaged around 100 annotations per hour, this

amounts to a full work-day of annotation time. Additionally, the ID

strategy achieves the best ALC on both datasets and our proposed

method, dynamic b, shows promising ability to approximate the

learning curves of the best performing query strategy. These strate-

gies could thus reduce annotation cost when used in other AL tasks

by removing the need to manually choose the query strategy type or

the b value, which the results show can dramatically influence per-

formance. Nevertheless, it is necessary to understand how to best

apply AL in order to reap its benefits. To contribute to this under-

standing, we present comparative visualization of the AL strategies

used in this study.

Comparative analysis of query patterns
Overall, we observed that the representative and combined sampling

methods outperformed the uncertainty sampling methods on both

datasets, largely due to a difference in slope of the learning curves in

the early stages of AL. We hypothesized that this difference is due to

the data distribution and how the query strategies pick the next ex-

ample from U. Uncertainty sampling methods rely entirely on the

current model trained on L to compute the informativeness of the

examples in U. When L is small, the prediction model is likely to be

poor, yet uncertainty sampling will choose examples close to the de-

cision boundary, reinforcing it. The result is a model that converges

slowly to the optimal decision boundary for the dataset. Representa-

tive sampling, on the other hand, finds a good decision boundary

quickly by ensuring that L (and the model trained on it) generalizes

to U.

To investigate this performance discrepancy, we compared the

learning curves and query patterns of three query strategies for each

dataset, including dynamic b, stratified by their type and

performance. We logged the orders in which examples were

chosen from U by each query strategy. U was then transformed us-

ing t-Distributed Stochastic Neighbor Embedding (t-SNE) (34) to 2

dimensions for visualization. Overlaying this visualization with a

heat map corresponding to the order in which examples were chosen

shows how trends differ by query strategy (Figure 4).

The low performing strategies, SM (Figure 4a) and ID b ¼0.01

(Figure 4b), exhibit different trends across the datasets. Both strate-

gies first sample data around the middle of the distribution. How-

ever, there is little improvement over the baseline on the SI dataset

in the early stages. This indicates that the first points queried by SM

from the SI dataset are not informative for the model, reinforcing

the aforementioned point of how uncertainty sampling strategies

can become “stuck” reinforcing a sub-optimal decision boundary.

On the other hand, ID b ¼0.01 on the CM dataset achieves a large

deviation from the baseline in the early stages, indicating that these

points are informative for the model.

Table 1. Area under the learning curve (ALC) and number of training examples required to reach target area under the ROC curve (AUC) of

the uncertainty, representative, and combined query strategies evaluated on the substance interactions and clinical medicine datasets

Type Query strategy Substance interactions Clinical medicine

ALC jLj @ 0.80 AUC ALC jLj @ 0.80 AUC

Baseline Passive 0.590 1295 0.491 2473

SM 0.597 1218 0.541 2093

Uncertainty LC 0.606 1051 0.543 2043

LCB2 0.607 1060 0.542 2089

D2C 0.623 891 0.548 2166

Representative Density 0.622 905 0.547 2136

Min-Max 0.634 657 0.550 2127

Combined ID (b ¼ 0.01) 0.626 771 0.534 2157

ID (b ¼1) 0.642 546 0.542 2146

ID (b ¼ 100) 0.635 653 0.550 2174

ID (dynamic b)a 0.641 587 0.549 2180

Bold values indicate the best performing method for that metric.
aNovel algorithm.
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These indications are supported by the query patterns of the mid-

dle (Figure 4c and 4d) and high (Figure 4e and 4f) performing strate-

gies. On the SI dataset, these strategies choose examples on the

outer edge of the data first (density sampling, Figure 4c) or sample a

relatively even spread (ID dynamic b Figure 4e) in the early stages.

As these strategies obtain a large deviation from the baseline learn-

ing curve early on, we infer that the most informative examples in

the SI dataset are spread around the outer portions of the distribu-

tion, rather than around the center where SM focuses. On the CM

dataset, the query patterns of the middle (SM, Figure 4d) and high

(ID dynamic b, Figure 4f) performing strategies are similar to the

low performing strategy in the early stages, i.e. they choose exam-

ples around the center and in the far-left cluster first. As all three

strategies achieve improvements over the baseline in the early stages

of AL, we infer that these examples are informative for the model.

Overall, the query patterns indicate that strategies which quickly

obtain an L that is representative of U perform best on this task.

The middle and high performing strategies on the SI dataset

(Figure 4c and 4e) obtain a representative subset by 1000 examples,

whereas the low performing strategy (Figure 4a) samples the outer

portions of the distribution only in the later stages of AL. Also, on

the CM dataset the strategies with the steepest initial learning curves

(ID b ¼ 1 and ID b ¼ dynamic, Figure 4b and 4f) sample from the

outer portions of the distribution earlier than SM (Figure 4d).

The improvement of the ID dynamic b ¼ dynamic strategy over

the density strategy on the SI dataset is due to the efficiency in which

the ID strategy obtains a representative subsample of the data. Un-

like density sampling, most of the points that ID dynamic b queries

last (the yellow points) lie at the center of small clusters. Given that

the ID learning curve increases faster than the density curve, we con-

clude that these points do not greatly influence the ML model’s abil-

ity to generalize to the test data. ID dynamic b thus achieves a

generalizable model by querying a representative subsample of the

data more efficiently than density sampling.

Figure 3. Average area under the ROC curve (AUC) learning curves for the uncertainty-based, representative-based, and combined query strategy types for the

substance interactions and clinical medicine datasets. Rows correspond to query strategy types. Columns correspond to the datasets.
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Limitations and future work
Although the inter-annotator agreement was “substantial” for both

datasets according to (33), we encountered issues of ambiguity dur-

ing annotation. For example, take the sentence and predication

“The influence of caffeine on the mitomycin C-induced chromosome

aberration frequency in normal human and xeroderma pigmento-

sum cells” xeroderma pigmentosum, PROCESS_OF, human. Here,

it is unclear whether the sentence is contrasting human cells and xe-

roderma pigmentosum cells or normal human cells and xeroderma

pigmentosum human cells. Additionally, we noticed different levels

of annotator disagreement across predicates. For example, there

were 3 times more disagreements regarding the MANIFESTATIO-

N_OF and TREATS predicates than the PRODUCES and ADMIN-

ISTERED_TO predicates.

This study covered the major uncertainty and representative

sampling query strategies. Still, there are numerous strategies in

addition to ID sampling that aim to combine informativeness and

representativeness that were not explored (25–27). Future work is to

perform a more in-depth analysis of how these strategies compare

and how informativeness and representativeness measures combine.

CONCLUSION

This study evaluated 8 different AL query strategies belonging to 3

different types on the task of filtering incorrect semantic predica-

tions from SemMedDB. Combined sampling methods were the most

effective on both datasets, in the best case reducing the annotation

cost by 58%. For the ID sampling strategy, we designed dynamic b,

a method for dynamically weighting the representative sampling

score, which demonstrated promising performance. We also per-

formed a comparative analysis of the query strategies, visualizing

Figure 4. Query patterns of the low, middle, and high performing query strategies for the substance interactions and clinical medicine datasets overlaid on a visu-

alization of U generated using t-SNE along with their corresponding learning curves. Dark blue corresponds to the first examples queried. Yellow corresponds to

the last examples queried. Columns correspond to the substance interactions and clinical medicine datasets, respectively. Rows from the top correspond to the

low, middle, and high performing query strategies, respectively.
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their query patterns with respect to their learning curves and perfor-

mance on this dataset.
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