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ABSTRACT

Natural Language Processing (NLP) is a subfield of artificial intelligence that is concerned with the

automatic understanding of human language by computers. NLP has seen much success in recent years

due to increased computing power and the rise of deep learning, and this success has extended into the

domains of biomedical and clinical text. NLP has contributed to tasks such as the discovery of drug

interactions, the development of clinical decision support systems, and the facilitation of chart review.

Part I of this chapter provides an introduction to NLP, some common tasks in the biomedical domain,

and the methods for accomplishing these tasks. Part II gives a survey of recent applications of NLP in

cardiovascular medicine.

KEYWORDS:

Natural Language Processing, Machine Learning, Artificial Intelligence, Biomedical Informatics, 

Clinical Informatics, Information Extraction



PART I: INTRODUCTION TO BIOMEDICAL NATURAL LANGUAGE PROCESSING

It is widely assumed that a key component of intelligence is the ability to understand and use

natural  language.  Natural  languages are  methods  of  communication  that  have  developed  naturally

within human society  without  explicit  planning.  These include  languages  such as  English,  Chinese,

Pashto, etc.  Natural language processing (NLP) is a subfield of artificial intelligence whose goal is to

program computers  to  understand  and analyze  natural  language.  The main  challenge  NLP faces  in

accomplishing this goal is  ambiguity, which abounds in natural language. Words often have multiple

meanings (e.g. “duck” in “We saw her duck.”), as do sentences (e.g. “No one does what we do well.”),

and ungrammatical English is often still quite meaningful (e.g. “Me want cheeseburger” still gets the

point  across).  Natural  language  thus  stands  in  contrast  to  formal  language such  as  computer

programming languages and languages of logic. Formal languages are completely unambiguous. For

example, a statement in C++ has exactly one meaning and all statements that are not grammatical C++

have no meaning at all. 

To  address  the  ambiguity  in  natural  language,  NLP borrows  extensively  from the  fields  of

linguistics, computer science, and artificial intelligence. Adopting this interdisciplinary approach, NLP

has been successful for widely used languages such as English, specifically the “typical” use of English

as in news articles and social media posts. However, as the field matures and NLP techniques become

more successful, researchers have started applying NLP to various new domains. 

In general, the goal of NLP is to understand what a given collection of texts, called a corpus, is

about. The biomedical domain, which includes journal articles and clinical notes from electronic health

records (EHRs), is one of the most exciting domains to which NLP has been applied in recent years.

NLP has  found much success  here,  having been used to  automatically  extract  knowledge from the

biomedical literature, to improve clinical outcomes via clinical decision support, and to discover new

drug interactions.  However, the analysis of a biomedical corpus (collection of texts) brings forth an



additional set of challenges over traditional NLP, in the form of increased ambiguity and patient data

privacy.

Ambiguity is a major challenge in biomedical text. Biomedical  text has its own  sublanguage,

that is, sets of words, phrases, and structures that differ significantly from typical language (Friedman,

Kra,  and Rzhetsky,  2002).  It  contains  a number of words that  do not  occur elsewhere (e.g.  “eIF2α

Kinase  GCN2”)  and  clinical  text  uses  a  shorthand  that  abandons  much  of  the  structure  of  typical

language (e.g. “68yo WM c CHF and DMII admitted for edema and DOE”). As such, many of the NLP

systems developed for typical language do not generalize to biomedical text and thus perform poorly.

These sublanguages can, furthermore, differ between subdomains and clinical sites making the task even

more difficult. Indeed, a major challenge in clinical NLP is generalizability: systems developed using

data from one clinical site or specialty (e.g. surgery or cardiovascular medicine) often do not perform

well when applied to data from another (Carrell et al., 2017). 

Patient data privacy is another critical issue for NLP applied to clinical text. The use of clinical

text  corpora  requires  prior  approval  from institutional  review boards  (IRBs)  and often  requires  de-

identification, the process of removing all protected health information (PHI) (e.g. names, dates, and

addresses)  that could allow one to identify the patient discussed in the note. Obtaining IRB approval

and  data  de-identification  are  lengthy  processes  that  significantly  affect  the  speed with  which  new

clinical NLP systems can be developed. Even once these processes are complete, sharing data across

institutions is difficult, which further hampers the development of NLP systems that perform well across

clinical sites.

The above challenges, while specific to biomedical NLP, pose questions that are important for

the field of NLP as a whole to answer: How should we approach sentence structure and meaning for

ungrammatical  or semi-grammatical  text? How can we efficiently  learn the meanings of previously

unseen words? How can we develop NLP systems that respect personal (patient) data privacy? We are a



long way from definitive answers to these questions and so these are crucial points to consider when

deploying NLP systems in the real world.

In the following sections, we discuss (1) The typical tasks when working with biomedical NLP

and (2) The methods commonly used to address them. We are careful to illustrate where biomedical

NLP differs significantly from traditional NLP, why it does so, and any implications.

TASKS IN BIOMEDICAL NLP

Creating an NLP model that understands a given corpus requires the completion of a number of

tasks, which can be broadly categorized into high-level and low-level tasks. High-level tasks in NLP are

often an end in themselves, while low-level tasks are part of the pipeline in addressing a high-level task. 

High-Level Tasks

High-level tasks include but are not limited to automatic language translation, summarization, and

question answering. The most prevalent high-level task in biomedical NLP, however, is  information

extraction (IE). IE aims to discover information or knowledge that is, in a sense, hidden within the text.

IE is therefore crucial for a variety of time- and life-saving clinical processes. For example, IE can help

facilitate chart review by extracting information from clinical notes (Wu et al., 2013), it can identify

potential drug interactions in the literature (Herrero-zazo et al.,  2013; Zhang et al.,  2014; Liu et al.,

2016) , and it can identify risk factors from clinical text to aid in clinical decision support (Demner-

Fushman, Chapman, and McDonald, 2009).  IE is comprised of a number of sub-tasks in practice –

named-entity recognition,  relationship extraction,  and entity  linking– which are described below. To

help illustrate these sub-tasks, we employ the example of extracting adverse drug reactions from clinical

reports.



Named-Entity Recognition (NER)

The goal of NER is to find all mentions of certain types of concepts or entities in a given corpus.

For example, an NER system might find mentions of symptoms and drugs within clinical notes. That is,

it reads through the input text and outputs the entity type (symptom or drug or null) of each word. The

main hurdle NER must face is polysemy, or words with multiple meanings.  In cases of polysemy, NER

turns to one of two subtasks: word-sense disambiguation (WSD) and acronym disambiguation. The goal

of WSD is to determine the intended meaning of a word as used in the text. WSD systems leverage

context  around  the  target  word  as  well  as  syntactic  information.  For  example,  the  word  “cold”  is

polysemous, having different meanings according to the context and its role in the sentence, e.g. “I feel

cold” (adjective) vs. “I have a cold” (noun). Acronym/abbreviation disambiguation is related to WSD in

that it aims to disambiguate acronyms by finding their correct expansion. For example, “MAP” expands

to mitogen-activated protein but also mean arterial pressure.  

While  polysemy is  pervasive in  text,  many of  the entities  in  biomedical  text  are  much less

susceptible to misinterpretation. For example, the word “tamoxifen”, especially in a clinical note, almost

certainly refers to the breast cancer drug. In some cases, this means that rather than employ complex

context- and syntax-aware methods, biomedical NER can proceed as a simple dictionary lookup. If the

given word exists in a list of drugs, then it is annotated as such. For certain entity types, this method

works relatively well in practice.

Entity Linking

Biomedical entities often have a large variety of synonymous terms. For example, vitamin C, L-

ascorbic acid, and  sodium ascorbate all refer to the same entity. Giving a word or phrase a precise

meaning is called grounding and it is often accomplished by the task of entity linking, which links entity

mentions (such as those found by NER) to entries in a terminology or database. Entity linking serves



two purposes: (1) it is a means of normalizing all synonymous mentions into a single form (such as a

specific database ID) and (2) it enables access to the other information stored about that entity in the

database. For example, by linking the term sodium ascorbate to its PubChem entry 54670067, we gain

access to its chemical structure, safety information, uses, etc. Entity linking also allows the knowledge

generated by an IE system to interface with and inform other biomedical information systems. 

Entity  linking also faces  issues  with ambiguity.  Even if  the NER or  WSD system correctly

identifies a word’s meaning, there may be multiple candidate database entries to link to. For example,

should “increased mean blood pressure” be linked to the Unified Medical Language System (UMLS)

entry Increased mean arterial pressure (C0520853) or  mean arterial pressure

increased (C4087413)?

Relationship Extraction (RE)

RE aims to discover relationships between entities in the text. The entities are often obtained by

running an NER system beforehand. Using the example of discovering adverse drug reactions, an RE

system should discern whether (1) the given symptom is an adverse reaction of the drug, (2) the drug

treats the symptom, or (3) the symptom and the drug are unrelated in the text. The output of an RE

system  is  thus  a  set  of  triples  with  a  <subject,  verb,  object> structure,  such  as  <tamoxifen,

has_adverse_reaction, chest pain>. RE systems look at the context, such the words between the two

entities, and the sentence structure in order to discern whether two entities are related. Both are crucial

for  an  effective  RE system as  clues  in  the context  can  be negated  by sentence  structure.  Take for

example the pair of sentences “We reviewed the charts of patients who were administered tamoxifen. It

has been reported to cause chest pain but not vomiting.” First notice that the drug name “tamoxifen”

does  not  occur  in  the  second sentence,  but  is  rather  referred  to  by “It”.  Resolving the meaning  of

pronouns like “It” across sentences is a task called anaphora resolution. Second, the context “reported



to cause” between the drug (“It”) and the symptom “vomiting” indicates a potential adverse reaction, yet

the “but not” indicates the opposite is true. The task of determining the scope of negation words such as

this is called negation detection and negation resolution, respectively.

The set of triples output by an RE system can be considered hypotheses, which can inform real-

world clinical outcomes such as those related to pharmacovigilance, precision medicine, and drug 

repurposing. 

Low-Level Tasks

Low level NLP tasks are those which are not an end in themselves, but are rather an integral part 

of larger NLP systems and crucial to the systems which perform the high-level tasks given above. Some 

low-level tasks are tokenization, sentence boundary detection, part-of-speech tagging, syntactic parsing,

and language modeling. Many modern and very capable systems exist to perform these tasks, even 

given the challenges of biomedical text, so this section will provide only a brief overview.

Tokenization

Tokenization is the process of splitting a text into its constituent word instances, or tokens. While in 

English most tokens are separated by whitespace or certain punctuation marks, biomedical text often 

contains exceptional tokens such as “q.i.d.” or “L-ascorbic acid”. 

Sentence Boundary Detection

Even in grammatical language, determining where a sentence starts and ends can be difficult. The period

“.”, which is used in many languages to denote the end of a sentence, occurs in other places, such as in 

acronyms (M.D.). This ambiguity is increased in clinical note shorthand, which can leave out 

punctuation altogether. Systems for sentence segmentation thus employ a variety of contextual clues to 

determine whether a given character, such as a period, is indeed an end-of-sentence marker.



Part-of-Speech (POS) Tagging

The part-of-speech (POS) of a word indicates the role it plays in a sentence, such as verb, noun, 

preposition, etc. Knowing a word’s POS can thus provide crucial clues about its meaning. Knowing, for 

example, that “Buffalo” is being used as a proper noun allows an NER system to narrow down the 

possible labels for it. POS tagging systems assign one of a number of tags, such as those from the Penn 

Treebank, to each word in the input. 

Syntactic Parsing

While POS tagging gives the roles of individual words, syntactic parsing determines how words fit 

together syntactically. Syntactic parsing can be shallow or deep. Shallow syntactic parsing groups words

into phrases, such a noun or verb phrases. Deep syntactic parsing goes a step further by determining how

words and phrases fit together to form a grammatical sentence. In both cases, a syntactic parser starts 

with the POS tags and combines them according to a set of grammatical rules to form a parse tree.

A deep syntactic parse of the sentence “The patient reports experiencing chest pain.” is given in Figure 

1. The structure of a sentence illuminated by a syntactic parse shows how phrases are related to each 

other and can thus provide crucial clues to an RE system. For example, the parse tree below shows that 

there is indeed a connection via a verb phrase between “The patient” and “chest pain”.

NLP METHODS

A number of methods exist for accomplishing the tasks described in the last section, which can 

be broadly grouped into rule-based methods and statistical or machine-learning methods. This section 

describes some common methods in each of these categories.



Rule-Based Methods

As  discussed  in  the  introductory  section,  natural  language  often  breaks  the  rules  of

grammaticality. It is therefore impossible to come up with a set of rules that would allow computers to

understand  every  utterance  in  a  given  language.  Nevertheless,  rules  can  account  for  a  number  of

linguistic phenomena. While the general NLP community has generally moved away from the use of

rule-based models for analyzing text in favor of more complex machine learning models, biomedical

NLP  continues  to  benefit  from  them.  Rule-based  systems  such  as  MetaMap  (National  Library  of

Medicine,  2019)  and NegEx (Chapman et  al.,  2013)  are  still  widely  used.  Additionally,  rule-based

models are often straightforward to implement and use, and their decision-making processes are readily

interpretable, both of which are vital attributes in the biomedical domain where NLP systems often carry

the weight of affecting patients’ health outcomes.

One of the most popular and powerful ways to implement rule-based NLP is by using regular

expressions  (regex). Regex is a small  programming language designed to match and extract text.  A

given regex specifies a pattern to search for and is composed of literal characters and metacharacters.

Literal characters allow for exact matches, e.g.  cat. Metacharacters have special meanings that either

match multiple characters or which operate on another character. For example, the period “.” matches

any character except newline and the plus “+” means  match the previous character 1 or more times.

Thus the regex cat.+ matches the literal string “cat” followed by any number of other characters such

as “catamaran”, “catch”, etc.

There are a number of existing expert-curated biomedical terminologies and ontologies that lend

even greater  power to  pattern  matching  systems.  Resources  such as  the Unified  Medical  Language

System (UMLS) (Bodenreider, 2004) and the Medical Dictionary of Regulatory Activities (MedDRA)

(Maintenance  and  Support  Services  Organization,  2019)  provide  standard  naming  systems  and

taxonomies for a large number of biomedical concepts. By augmenting keywords obtained from these



resources  using  regular  expressions,  an  NLP system is  often  able  to  handle  much of  the  linguistic

variation in biomedical text, such as plural forms. 

Statistical and Machine Learning Methods

Despite the continued relevance of rule-based models in biomedical NLP, the rise of machine

learning (ML), specifically deep learning, has allowed for unprecedented performance on a variety of

biomedical NLP tasks. We here describe a few common ML models for NLP, but in general one can

think of an ML model for NLP as taking in a collection of numbers representing the text and outputting

a collection of probabilities or  predictions  corresponding to the specified hypotheses (e.g. “at risk of

heart attack” vs. “not at risk of heart attack”), which can then be used to make a decision. 

Features

As mentioned above, the input to an ML model must be a numerical representation of the input,

but what does it mean to represent a word or a sentence numerically? There are a number of specific

implementations, but in general the text is transformed into a vector, i.e. a list of numbers, that in some

way represents its meaning. 

Bag-of-words (BOW) is one of the simplest ways to represent text numerically. Each word in the 

corpus (collectively called the vocabulary) is assigned a place in a large vector. A “1” is marked down 

for each word that occurs in a given document. For example, say the vocabulary extracted from a corpus

is the following:

[the, patient, arrhythmia, doctor, reports, saw]

Then the following sentences would be represented as

The patient reports arrhythmia [1, 1, 1, 0, 1, 0]

The doctor saw the patient [1, 0, 0, 1, 0, 1]



Note that BOW does not maintain the order of the words, nor does it indicate how many times a word

occurs.  Additionally,  words  such as  “the”  that  provide little  insight  into  a  document’s  meaning are

treated the same as more illuminating words, such as “arrhythmia”. Term Frequency Inverse Document

Frequency (TF-IDF) accounts  for variation  in word importance  by weighting words according to a

combination of their  frequency in the document and their  frequency in the entire corpus (Manning,

Raghavan, and Schütze, 2008). “Important” words occur frequently in a few documents but infrequently

across the entire corpus; these will receive a high score. Words that occur frequently throughout the

corpus are “unimportant” will receive a low score.

Word Embeddings  or  Word Vectors are one of the most important advances in NLP in recent

years.  As  opposed  to  BOW  and  TF-IDF,  which  represent  each  word  by  a  single  number,  word

embeddings represent each word as a vector of numbers. Specifically, the numeric vector of a word is

computed by a neural network model (discussed later) and is determined by the contexts in which that

word occurs in a corpus. The assumption here is that words with similar contexts have similar meanings.

In practice this assumption is a powerful one. When estimated using a sufficiently large amount of text

data, word embeddings capture phenomena such as synonymy and analogy surprisingly well. Figure 2

provides  a  geometric  interpretation  of  how word embeddings  capture  analogous  meanings  between

words. 

The invention  of word embeddings has led to significant  advances  in NLP across tasks and

domains. Indeed, it was a major motivation for the rise of neural network models in NLP. The original

word embedding model, Google’s Word2Vec (Mikolov et al., 2013), is still widely used and has been

adapted to biomedical text (Pyysalo et al., 2013; Zhang et al., 2019). Other implementations are fasttext

(Bojanowski et al., 2016), which allows embeddings to be determined for out of vocabulary words, and

GloVe (Pennington, Socher, and Manning, 2014), which estimates the embeddings from a word co-

occurrence matrix, rather than directly from the text.



N-gram language model

An n-gram language model is one that predicts the next word given the n-1 previous words using

a simple count-and-divide method. The predictive model is estimated for a given sequence of n words

by dividing the number of times that sequence occurs in the corpus by the number of times the previous

n-1  words occur in the corpus. For example,  say the 4-gram “She fed the dog” occurs 2 times in a

corpus and the 3-gram “She fed the” occurs 8 times. Then the probability that the next word is “dog”

given “She fed the” is 
2
8
=0.25. Language models allow us to compute the overall probability of a series

of words, which is useful for a variety of prediction tasks. 

Hidden Markov Model (HMM)

HMMs are sequence models. That is, given a sequence of inputs, such as words, an HMM will

compute  a  sequence  of  outputs  of  the  same length.  An HMM model  is  a  graph where  nodes  are

probability distributions over labels and edges give the probability of transitioning from one node to the

other.  Together,  these  can  be  used  to  compute  the  probability  of  a  label  sequence  given the  input

sequence. Figure 3 illustrates a small HMM for weather given the temperatures over a number of days.

According to this model, the temperature is unlikely to change dramatically from one day to the next.

That is, it is unlikely to go directly from <0 °C to >20 °C. 

HMMs are often used for tagging tasks such as POS tagging and NER where a given label

depends not only on the word in question but also the sequence of labels up to that point (e.g. it is

unlikely that a verb follows a preposition).

Support Vector Machine (SVM)

 The SVM is a model which learns how to separate data points (e.g. words or sentences) into one

of two possible classes. As opposed to n-gram models and HMMs, the SVM is a discriminative model in



that it does not estimate probabilities of belonging to one class or the other but rather it finds a decision

boundary that separates the data points in geometric space (Cortes, Vapnik, 1995). Furthermore, because

there are potentially many boundaries that separate the data points, the SVM finds the boundary which

has the maximum distance from the two closest data points of opposite classes (these are the support

vectors). Figure 4 shows a decision boundary estimated by an SVM on some toy data.  

SVMs are most often used for prediction: after estimating a decision boundary on a set of data

points for which we know the labels, the SVM predicts the labels of any new points by computing which

side of the boundary they fall  on. SVMs work quite well  for a variety of NLP problems and, until

recently, were used by many state-of-the-art systems for text classification. 

Neural Networks

The SVM in its standard form is a  linear classifier. That is, the decision boundary it finds is

always perfectly straight, as shown in Figure 4. However, the classes in many data sets are not separable

by a linear boundary. While it is possible to modify the SVM via something called a kernel function to

allow it to estimate a nonlinear decision boundary, it is still limited in its expressivity by the exact kernel

function used. Neural network models (NNs), on the other hand, have the ability to approximate any

function whatsoever, meaning the nonlinear decision boundary they find can be as nuanced as desired

(Lu  et  al.,  2017).  Furthermore,  this  decision  boundary  can  be  found automatically  without  manual

experimentation, as is necessary with SVMs and kernel functions. NNs accomplish this by transforming

the data  multiple  times  before computing the output.  Each of these intermediary  transformations  is

called a hidden layer and an NN that uses multiple hidden layers is called a deep neural network (DNN).

Figure 5 illustrates a simplistic neural network with a single hidden layer that predicts whether a patient

is at risk for heart failure given three risk factors. The three risk factor values are first transformed into

two hidden values by multiplying them by a set of weights. The result of this multiplication is in turn

multiplied by a second set of weights to obtain the final values, which correspond to the decision. 



NNs are realized in a wide variety of architectures. The neural network in Figure 5 is an example

of a feed-forward neural network (FFNN) as the values of each layer are fed directly into the next layer

via  a  linear  transformation.  Other  common NN architectures  are  the  convolutional  neural  network

(CNN) and the recursive neural network (RNN). Illustrations of these architectures are given in Figure

6. 

CNNs (Figure 6-A) were originally  designed to mimic the human vision system in order to

improve performance on automatic  image recognition  (Lu et  al.,  2017).  Rather  than  apply  a  linear

transformation at each layer as in FFNNs, CNNs use mathematical operations called  convolutions to

filter the input and highlight important information. In the case of images, this filter can, for example,

find the edges of the objects in the image. However, it was found that CNNs also achieve very good

results on text classification tasks (Lecun et al., 1998). CNNs operate on text data by, in a sense, looking

at  the  entire  document  at  once  to  distill  its  overall  meaning,  and  the  convolutions,  rather  than

highlighting the edges of an image, highlight important words or phrases. For this reason, CNNs are best

for text classification tasks such as determining whether a patient is at risk for heart disease from a

clinical note.

RNNs (Figure 6-B) are  different  from feed-forward neural  networks and CNNs in that  they

operate over time (Rumelhart,  Hinton, and Williams, 1986). In other words, the hidden layer at the

current time step is composed with the hidden layer from the previous time step. In this way, the RNN

remembers what it has previously seen. This makes RNNs well-suited to text data because they are able

to reason about the current word given the previous words in the input. While standard RNNs use the

same operations as FFNNs to compute the hidden states, two common variations, Long Short-Term

Memory (LSTM) (Sepp, Jürgen, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014), replace the

standard hidden state with specialized operations that allow the network to selectively remember or

forget certain parts of what it has seen before. This allows the network to take long-range context into

account when handling a given word. LSTMs accomplish this by using a series of memory cells that



selectively remember or forget information as it passes from the hidden layer at the previous time step to

the current time step.

Standard  RNNs  are  good  for  transforming  an  input  sequence  into  an  equal  length  output

sequence, such as biomedical text input to word labels for an NER task. To transform between two

sequences  of unequal length,  on the other  hand, an  encoder-decoder network is  used (Figure 7-A),

which uses a stack of two RNNs (Sutskever,  Vinyals,  and Le, 2014).  The first  RNN (the encoder)

transforms the input into a single context vector (sometimes called a thought vector). The context vector

is then fed into the second RNN (the decoder), which uses it to generate the required output.  Because

the input and output can be of unequal length, encoder-decoder networks are often used for tasks such as

question answering (where the input is a question and the output is  an answer) and translation,  for

example from English to Chinese or from complex clinical text to a simplified version fit  for a lay

person.

Nevertheless, the encoder-decoder architecture described above has two issues. First, the entire

input sequence is encoded into a single context vector, which is not ideal especially for very long input

sequences. Second, the context vector is only made available to the initial state of the decoder, meaning

that later decoder states will use it less. To combat these issues, the attention mechanism was developed,

which provides a robust way to pass information from the encoder to the decoder (Bahdanau, Cho, and

Bengio, 2014). Rather than use a single context vector, the attention mechanism computes a new context

vector for each decoder output state from a weighted combination of the input states (Figure 7-B). These

weights  indicate  how much “attention”  the decoder  pays to  each input  word when generating  each

output word. 

While early uses of attention were in encoder-decoder networks using RNNs, it was later found

that the RNNs themselves could be replaced by a modified attention mechanism called  self-attention

(Cheng, Dong, and Lapata, 2016). In self-attention, the hidden state for each input word is computed

from a weighted combination of the other input words. By looping back on itself  in this way, self-



attention is able to compute a hidden state for each word (like RNNs) by looking at  all  the words

surrounding it (like CNNs). The seminal paper, ‘Attention is All You Need’ (Vaswani et al., 2017),

showed that an encoder-decoder network using only attention and self-attention (an architecture called a

transformer) siginificantly outperforms RNN-based encoder-decoder networks on a number of different

NLP tasks.

The use of  attention  and self-attention  culminated  with the  development  of  Google’s  BERT

model, short for  Bidirectional Encoder Representations from Transformers  (Devlin et al.,  2018). By

applying the model architecture from ‘Attention is All You Need’ to a language modeling task, BERT is

able to learn contextualized representations of input words. These contextualized representations  are

similar to word embeddings, but use the surrounding words to determine the sense of the target word

and adjust  its  embedding  accordingly.  This  eliminates  the  issue with standard  word embeddings  in

which multiple meanings (for example, river bank and money bank) are collapsed into a single vector.

Furthermore, BERT’s contextualized representations can be used as a starting point for training task-

specific NLP models in a process called  fine-tuning. The BERT paper showed that by using a BERT

model  trained  on  a  sufficiently  large  amount  of  text  data,  fine-tuning  can  achieve  state-of-the-art

performance on a variety of  NLP tasks using a fraction of the training data of its competitors. 

The combination of BERT’s performance and the relative ease of fine-tuning it for specific tasks

shot it into the spotlight, motivated a variety of modified versions, such as AlBERT (Lan et al, 2019),

RoBERTA (Liu et al., 2019), and BART (Lewis et al., 2019), and inspired researchers to apply it in

various disciplines. The base BERT model has been retrained on both biomedical (Lee et al., 2019) and

clinical (Kexin, Jaan, and Rajesh, 2019) text, leading to significant improvements over the state-of-the-

art on a number of tasks in these domains..



BIOMEDICAL NLP RESOURCES AND SYSTEMS

The field of biomedical NLP is growing rapidly. As such, many new tools and resources are 

being developed for performing a variety of NLP tasks on biomedical and clinical text. This section 

briefly describes a few often used, open-source resources and systems.

Biomedical Terminologies and Ontologies

The Unified Medical Language System (UMLS)

The UMLS (Bodenreider, 2004), developed by the U.S. National Library of Medicine (NLM), 

collects and integrates a large number of biomedical terminologies and ontologies into a single system. 

The UMLS encompasses the Metathesaurus, the Semantic Network, and the SPECIALIST Suite of 

tools. The Metathesaurus is a collection of biomedical terms from over 200 existing vocabularies such as

MeSH, RxNorm, and SNOMED-CT. The Semantic Network consists of a set of broad subject categories

(i.e. semantic types) and relationships (i.e. semantic relations) between these semantic types.. The 

SPECIALIST suite provides a lexicon and lexical tools for working with biomedical text. 

RxNorm

RxNorm (Liu et al., 2005)  is a system for normalizing drug names and supporting 

interoperability between health systems. It normalizes names by assigning types to each component of 

the name. For example, the drug name “Fluoxetine 4 MG/ML Oral Solution” is comprised of an 

ingredient (Fluoxetine), a strength (4 MG/ML), and a dose form (Oral Solution). 

Biomedical NLP Systems



MetaMap and SemRep

MetaMap (National Library of Medicine, 2019) is a tool developed by the U.S. NLM for linking 

entities to the UMLS. The SemRep (Rindflesch, Fiszman, 2003)  tool extracts relationships between 

UMLS concepts identified by MetMap from biomedical literature. Both tools use a rule-based approach.

The NLM regularly runs MetaMap and SemRep on the entirety of PubMed abstracts to produce a 

database of extracted relationships, called SemMedDB (Kilicoglu et al., 2012) . 

cTAKES

Apache cTAKES (Savova et al., 2010)  is a free information extraction system for biomedical 

and clinical text originally developed at the Mayo Clinic. It is able to extract mentions, perform entity 

linking, mark negated or uncertain expressions, and identify expressions of time (e.g. “follow up in 1-2 

weeks”). cTAKES is built using the Apache Unstructured Information Management Architecture 

(UIMA) (Ferrucci et al., 2009) , which means its pipelines are specified using modular components. In 

addition to modularity, UIMA allows for interoperability between systems built according to its 

framework.

The BioMedical Information Collection and Understanding System (BioMedICUS)

BioMedICUS (BioMedICUS, 2019) is a free and open-source system for large-scale biomedical 

and clinical text analysis developed at the University of Minnesota Institute for Health Informatics. It 

contains a number of components for doing low-level tasks such as tokenization, sentence boundary 

detection, and POS, tagging as well as prespecified pipelines for processing clinical documents. These 

pipelines focus on areas such as social history, time, and measures.

CLAMP (Clinical Language Annotation, Modeling, and Processing Toolkit)

CLAMP (Soysal et al., 2018) is developed at The University of Texas Health Science Center at 

Houston. It incorporates state-of-the-art NLP modules that can be combined into customized pipelines 



and is built upon the UIMA framework, meaning it is compatible with other systems such as cTAKES. 

CLAMP also provides user-friendly interfaces for end-users to leverage NLP components to build 

customized NLP pipelines. CLAMP allows users to combine both machine learning, deep learning with 

rule-based approaches for performance optimization.

SUMMARY

Natural language processing seeks to address a variety of problems, from word tokenization to 

syntactic parsing to question answering. In the biomedical domain, however, information extraction (IE)

is the major focus, and is comprised of subtasks such as named-entity recognition (NER), entity linking, 

and relationship extraction. In general, the NLP methods used for these tasks can be divided into two 

categories. The first are rule-based, which employ regular expressions, keyword lists, and other 

manually defined logic to process text. While, rule-based methods have largely been discarded by the 

NLP community in favor of modern machine learning approaches, they still find a home in the 

biomedical domain, as they are easy to implement, use, and interpret, and in many cases perform 

competitively with modern approaches. Some notable rule-based systems are MetaMap and SemRep for 

entity linking and relationship extraction, and NegEx for negation detection. The second category are 

machine learning methods, which automatically learn to perform NLP tasks by using statistical 

modeling techniques. Most notably, the explosion of deep neural networks in recent years has motivated

a number of powerful models for NLP, including convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), and transformers, the last of which have shown enormous potential across 

many tasks and domains. Nevertheless, earlier models such as hidden-markov models (HMMs) and 

support vector machines (SVMs) often perform well in practice.

A number of existing tools exist for NLP in the biomedical domain. The Unified Medical 

Language System (UMLS) provides an invaluable and expansive biomedical terminology. The UMLS is

used by the aforementioned MetaMap and SemRep to perform entity linking and relationship extraction.



Finally, cTAKES, CLAMP, and BioMedICUS are toolkits for biomedical NLP that include functionality

for a variety of tasks, from tokenization to relationship extraction.

PART 2: APPLICATIONS OF NLP IN CARDIOVASCULAR RESEARCH

It is a rising trend to  apply NLP in research related to cardiovascular diseases. The American

College of Cardiology released the “Roadmap for Innovation” in 2017 that emphasizes the importance

of NLP and machine learning in the era of digital health (Bhavnani et al., 2017). The rapid development

and adoption of EHR systems documenting vast  amounts of real-world  patient  data has created  many

research opportunities. Valuable clinical information (e.g., symptoms, lab values, disease histories) for

cardiovascular  research is  found documented in free text  in EHR systems,  making it  impractical  to

manually  identify  the  information.  Thus,  one  important  topic  is  to  accurately  extract  the  value

information from numbers of clinical notes in an automatic way. In this section, we summarize relevant

studies to demonstrate the role of NLP in current research related to cardiovascular diseases.

NLP for Information Extraction

Extracting information from text data is one of the primary tasks of NLP in the clinical area. The

unstructured part of EHRs mainly contain three types of data, real-time data, retrospective data, and

clinically irrelevant data (Bhavnani et al., 2017) . The real-time data often contains information about

the current encounter (e.g. diagnosis, test values, symptoms of diseases). The retrospective data provides

information about past encounters (e.g. past diagnosis, treatments applied). The clinical irrelevant data

includes  information  about  administration  information,  etc.  Research  regarding NLP applications  in

clinical settings has provided practical ways to extract targeted information from the clinical texts in the

face of irrelevant information.



Rule-based NLP applications in cardiovascular research

Researchers have been using NLP for information extraction tasks in clinical settings since the

2000s. Friedlin et al. developed an NLP tool called REgenstrief data eXtraction tool (REX), with the

object  to  extract  a  list  of  targeted  congestive  heart  failure  (CHF)  related  concepts  (e.g.  CHF,

cardiomegaly) from x-ray reports (Friedlin, McDonald, 2006) . The REX uses regular expressions and a

set of rules to detect the targeted concepts and analyze their contexts. They found that the performance

of REX was better than the human annotators in the evaluation, with an average sensitivity of 0.98. The

shortcomings of REX include that it could only extract simple concepts and it is not good at dealing with

spelling  errors  and variations,  acronyms disambiguation,  and contextual  information  (e.g.  negation).

Khalifa et al. developed an NLP application based on the Apache UIMA framework by integrating two

existing NLP resources, cTAKES and Textractor, to identify cardiovascular risk factors (e.g. obesity,

smoking status, diabetes) from clinical notes (Khalifa, Meystre, 2015). Their NLP pipeline is shown in

Figure 7. The raw texts are pre-processed (e.g. sentence detection, tokenization, POS tagging), which are

then fed into the rule-based modules in cTAKES and Textractor to extract different risk factors. 

This study applies dictionary look-up, machine learning, and regular expression methods in the

pipeline to identify different variables. For instance, it uses a machine learning module to identify the

smoking status of patients with features like words of the sentence and their POS tags. Medications and

laboratory results are detected using the rule-based pattern matching modules, while disease and risk

factor  terms  are  identified  using  the  UMLS  Metathesaurus  lookup  module  from  Textractor.  This

application was evaluated using the 2014 i2b2 challenge dataset and achieved an overall micro-averaged

F1-measure  of  87.47% and  a  macro-averaged  F1-measure  of  86.99%.  This  study  shows  that  it  is

practical to reuse and integrate existing NLP tools to solve similar tasks with minor modifications.

NLP has also been used for cardiovascular disease phenotyping in the EHR. Ye et al. developed

a pipeline that identifies atherosclerotic cardiovascular disease (AVD) phenotypes from both the EHR

and biorepository data of patients which includes both structured data and unstructured data (Ye et al.,



2013). Rule-based NLP methods were used to identify risk factors and medication usage of the AVD,

such as smoking status, diabetes, hypoglycemic agents, and anti-hypertensive medications. The output

of the system was further combined with structured data (e.g. demographics, laboratory tests, diagnosis

codes) to finally determine the phenotypes of patients.

Machine learning and deep learning with NLP applications in research

NLP applications in clinical settings have been evolving from rule-based methods to machine

learning and more advanced deep learning methods. Weng et al. constructed an NLP pipeline based on

cTAKES to identify the subtype of the clinical notes, such as cardiology reports (Weng et al., 2017).

Both shallow machine learning and deep learning methods were investigated in the study. Two types of

features  were  used.  The  first  is  lexical  features  of  words  (e.g.  bag-of-word  and  UMLS  concepts)

obtained  by  the  NLP  pipeline.  The  other  type  of  feature  is  the  distributed  word  (word2vec)  and

document representations (distributed memory model of paragraph vectors). The classifiers used include

the Naïve Bayes algorithm, multinomial logistic regression, regularized SVM with linear kernel, and

two ensemble algorithms, random forest and adaptive boosting. They also evaluated two deep learning

methods:  CNN and LSTM models.  The  best  performance  was  obtained  by the  LSTM model  with

fastText word embeddings, with an AUC score of 0.98. 

Zhang et al. developed both rule-based and machine learning-based NLP methods to identify the

New York Heart Association (NYHA) class of patients from their clinical notes, and compared their

performance (Zhang et al., 2018) . The NYHA is used as a measure of a patient’s response to Cardiac

Resynchronization Therapy (CRT), which may inform a better understanding of the progression of heart

failure  to  assess  CRT  effectiveness.  For  the  machine  learning  based  method,  the  texts  were  pre-

processed (e.g.  remove stop words,  normalize lexical  variants)  and bag-of-words and n-grams were

extracted as features. Using these features SVM, logistic regression, and random forest models were

developed and evaluated. The random forest model with n-gram features obtained the best performance



with a F-1 score of 93.78%, which surpassed the performance of rule-based method. The study indicates

that traditional machine learning algorithms with features created by NLP methods can be effective in

clinical text classification tasks. 

Chokwijitkul et al. evaluated two deep learning architectures, CNN and RNN as well as three

RNN variants, including LSTM, bidirectional long short-term memory (Bi-LSTM), and gated recurrent

unit (GRU), for extracting cardiac risk factors from EHRs (Chokwijitkul et al., 2018). The dataset used

in the study comes from the i2b2/UTHealth shared task. The risk factors to be extracted include clinical

concepts related to CAD, diabetes,  hypertension,  hyperlipidemia and their relevant medications. The

CNN model uses the window approach to classify each individual word at a time instead of the entire

sentence  for  the  NER  task.  This  approach  assumes  that  the  label  of  a  word  is  dependent  on  its

neighboring words within the window size.  The clinical  text was transformed into pre-trained word

embeddings  as  input  of  neural  network  models.  Evaluation  showed  that  RNN-type  networks

outperformed  the  CNN  in  their  task.  Among  different  RNN  models,  Bi-LSTM  achieved  the  best

performance  with  F-measure  of  0.908  on  the  test  data.  Their  study  shows  that  the  deep  learning

approaches were comparable to highly feature-engineered hybrid systems, and could obtain promising

results without the help of any knowledge-driven methods. Thus, lots of human labor could be saved by

the deep learning approaches. 

Viani et  al.  developed a novel application that used an RNN to extract  clinical  events (e.g.,

problem,  test,  treatment)  from cardiology  reports  written  in  Italian  (Viani  et  al.,  2019).  Traditional

machine learning methods often rely on complicated linguistic features (e.g., lexical, morphological and

syntactic features), which usually need manually feature engineering. For neural networks, it could learn

the representations starting from tokens or characters. A GRU model with pre-trained word embeddings

and POS tags as features was compared with a dictionary look-up method, a standard SVM model, and a

set  of  existing Bi-LSTM-CRF models.  The GRU model  obtained an F-1 score of  87.4% and after



integration  with  the  dictionary  look-up  method,  the  F-1  score  increased  to  90.1%,  indicating  that

combining different methods may increase the performance at low cost. 

NLP for Clinical Decision Support

Clinical decision support (CDS) aims to aid clinicians by providing them with easily accessible

health-related information at the point of potential actionable advice. NLP is instrumental in extracting

valuable  information  from  unstructured  data  to  represent  clinical  knowledge  and  drive  CDS

interventions  which  would  improve  the  quality  of  healthcare  (Demner-Fushman,  Chapman,  and

McDonald, 2009). 

Moon et al. developed and deployed NLP algorithms to automatically extract sudden cardiac

death (SCD) factors such as syncope, family history of SCD, and hypertrophic cardiomyopathy from

clinical  narratives  (Moon  et  al.,  2019)  .  They  developed  regular  expression  and  rule-based  NLP

algorithms  using  MedTagger,  which  has  been  adopted  enterprise-wide  by  the  Mayo  Clinic.  The

keywords for different clinical concepts used for the developed algorithms were obtained by manually

reviewing and searching lexical variations and synonyms from the UMLS Metathesaurus. The assertion

and negation detection module in MedTagger is integrated in the NLP pipeline to improve the results.

For evaluation, they compared the NLP pipeline with the standard method of using the registry, billing

codes,  and  patient  surveys  to  extract  the  syncope,  family  history  of  SCD,  and  hypertrophic

cardiomyopathy. The NLP pipeline showed superior performance to the standard method for this task.

The extracted SCD risk factors are expected to be fed into clinical decision support systems to increase

efficiency of the HCM patients’ management workflow for providers to improve the quality of care.

Meystre  et  al.  developed a  new CHF treatment  performance  measure information  extraction

system  based  on  the  UIMA  framework  called  CHIEF  (Meystre  et  al.,  2016).  The  system  uses  a

combination of rules, dictionaries,  and machine learning methods to extract  left  ventricular function



mentions  and  values,  CHF medications,  and  documented  reasons  for  a  patient  not  receiving  these

medications.  For  instance,  to  extract  the  left  ventricular  ejection  fraction  (LVEF)  mentions  and

corresponding values, it uses both regular expressions and machine learning with morphological (e.g.

prefixes  and  suffixes),  lexical  (e.g.  words  themselves  and  n-grams),  syntactic  (e.g.  POS tags),  and

semantic features (e.g. output of regular expression). The output information was integrated to classify

the CHF treatment quality of patients. If a patient is identified with low LVEF measurements (<40%)

and does not take the required medications, it indicates poor treatment quality. It may achieve the fast

and  scalable  detection  of  CHF  patients  not  receiving  recommended  treatment,  which  could  help

clinicians decide further treatment for patients at the point of care.

NLP for Predictive Models Related to Cardiovascular Disease

The combination of NLP and machine learning methods is promising in the development of

models for predicting cardiovascular diseases. Choi et al.  explored using RNNs to predict the initial

diagnosis of heart failure (HF) (Choi et al., 2016). Compared to traditional machine learning methods,

RNNs (LSTM and GRU specifically) are more suited to identify patterns in longitudinal data. The GRU

model  was developed to capture the relations  among events (e.g.,  diagnosis of diseases, medication

orders and procedure orders) with time stamps. They processed the clinical events in both structured and

unstructured data using a standard NLP pipeline and encoded the events using a set of one-hot vectors as

the  input  of  the  GRUs.  The output  is  the  risk  of  HF for  a  patient.  When comparing  with  logistic

regression,  SVM, and multilayer  perceptron,  the GRU model  obtained an AUC of  0.883,  which is

significantly higher than other models. This study could help the early detection of HF, which open new

opportunities for delaying or preventing progression to diagnosis of HF and reduce cost. Maragatham

and Devi performed a similar study, developing an LSTM model that used the temporal information of

patients’ hospital encounters to predict their risk of HF (Maragatham, Devi, 2019). They applied skip-



gram to encode the procedure, medicine,  and diagnosis events as vectors for LSTM model training.

They evaluated the LSTM model with different observation windows (3-12 months), and compared its

performance with several baseline models (e.g., SVM, multilayer perceptron, logistic regression). The

LSTM model obtained the best performance with an AUC of 0.7969, using a 12 month observation

window. Using NLP and deep learning methods to predict  risk of disease is promising and has the

potential to be integrated into CDS systems to improve the quality of care.

NLP for Cohort Identification of Cardiovascular Diseases

Cohort identification is another important task in the field of clinical research. It is a vital step for

other tasks such as clinical trial screening and recruitment and public health studies. Traditional cohort

identification uses structured data such as the International Classification of Diseases (ICD) codes and

billing codes. However, using NLP methods on unstructured clinical texts has shown to better improve

cohort identification tasks. Wang et al. developed an NLP-based algorithm to find CHF cases from the

EHR (Wang et al., 2015). In total, there are 32 CHF discriminant features included in the final pipeline.

The features were extracted from both structured (e.g. demographics, vital signs) and unstructured data

(e.g.  ICD code  of  ‘CHF’,  terms  like  ‘heart  failure’  and  ‘congestive  heart’)  in  the  EHR.  A binary

classification algorithm was then developed based on the features to judge if the patient has CHF. In

evaluation, the NLP-based algorithm obtained a F-measure of 0.789. Also, the algorithm was integrated

into the Health Information Exchange population exploration system in the state of Maine to conduct a

real-time CHF identification task. The algorithm identified over a thousand patients that have not been

coded as CHF patients previously. Geva et al. developed a computable algorithm to improve the cohort

identification of pulmonary hypertension (PH) (Geva et al., 2017). In order to include text data in the

EHR as  features  for  the  computable  algorithm  development,  they  applied  an  NLP  tool,  Narrative

Information Linear Extraction (NILE) package, to identify clinical concepts (e.g. medication mentions,

symptoms of the diseases) relevant to PH in patients' clinical notes. Based on the extracted features, they



fitted an adaptive least absolute shrinkage and selection operator (LASSO) penalized logistic regression

model to identify if the patient has PH. The algorithm was evaluated and obtained the best performance

with AUC of 0.900. The developed algorithm is promising to recruit the largest cohort of pediatric PH

patients to date for further research on this disease.

Conclusion

In  summary,  NLP applications  in  cardiovascular  disease  are  developed  for  various  tasks  in

processing and analyzing clinical texts, and a few of them have been applied in real practice. Currently,

the major goals of NLP applications in clinical research are to extract and classify the target information

of  patients.  NLP methods have evolved from rule-based methods to  conventional  machine  learning

based  methods.  Most  recently,  advanced  deep  learning  techniques,  especially  transformers  such  as

BERT, have led to unprecedented advances in NLP. These the potential to radically change how we

approach NLP problems by removing the need for vast amounts of task-specific training data. There are

still  challenges  and opportunities  of  NLP tasks  in  cardiovascular  diseases.  In  the  future,  NLP will

continue to play vital roles in both clinical research and clinical practice.

FIGURE LEGENDS



Figure 1: The full syntactic parse for the sentence “The patient reports experiencing chest pain.”. The 

parser recursively combines the POS tags according to predefined grammatical rules until it obtains a 

full parse. The abbreviations are defined as follows. DT: determiner, NN: singular noun, VBZ: third-

person singular verb, VBG: Gerund, NP: noun phrase, VP: verb phrase, S: sentence. 

Figure 2: An illustration of how word embeddings capture similar meanings between concepts. The 

word embeddings for “Woman”, “Man”, “Queen”, and “King” can be visualized as points in space. 

When estimated on sufficient data, the difference vectors between the embeddings of the word pairs are 

parallel and of the same magnitude, showing that the embeddings capture the distinction between 

woman and man.



Figure 3: A simple hidden markov model (HMM) for the weather over a number of days. Together, the 

transition probabilities between the states of the HMM and the emission probabilities at each state 

encode the probability of a sequence of temperatures and conditions. Such a model could be used to 

predict the next day’s weather given the current weather. 



Figure 4: An illustration of the decision boundary estimated by an SVM on toy data. The data points are

arranged in 2 dimensions and belong to one of two classes (the circles or squares). The optimal decision 

boundary estimated by the SVM is given by the solid line. The support vector is w (-w in the opposite 

direction), which defines the distance between the boundary and the closest examples of opposite 

classes.

Figure 5: A feed-forward neural network with a single hidden layer for predicting whether a patient is 

as risk for CHF given the values of their risk factors. 



Figure 6: A) A convolutional neural network (CNN) architecture. Each word of a given input text is 

represented as a vector (usually a word embedding). A series of filters (i.e. convolutions) of various 

sizes (the blue, green, and red boxes) is applied to the input to obtain an intermediate representation, 

which is then passed to a feed-forward neural network for prediction. B) A recursive neural network 

(RNN) architecture. Here xt, ht, and yt  refer to the inputs, hidden units, and outputs, respectively. The 

values of the hidden unit at a given time t are composed with the values from the previous time step and 

thus the previous input is used to predict the current output. Furthermore, these hidden units can be 

swapped out for Long-Short Term Memory units (LSTM) or Gated Recurrent Units (GRU) to improve 

processing of long-range dependencies in the input.



Figure 7: A) A standard encoder-decoder network. The encoder uses an RNN to compress the input into

a single context vector, which is then fed into the first layer of the decoder, which is also an RNN. The 

lengths of the input and output need not be the same length. B) An encoder-decoder network with 

attention. As opposed to a single context vector, attention allows the network to use all the encoder 

hidden states when computing the output of each decoder hidden states. The encoder hidden states are 

weighted by parameters learned during model training.
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